Bioelectric Characterization of Epithelia from Neonatal CFTR Knockout Ferrets

JT Fisher, SR Tyler, YL Zhang, BJ Lee, XM Liu, XS Sun, HS Sui, B Liang, MH Luo, WL Xie, YL Yi, WH Zhou, Y Song, N Keiser, K Wang, Hugo de Jonge, JF Engelhardt

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

Cystic fibrosis (CF) is a life-shortening, recessive, multiorgan genetic disorder caused by the loss of CF transmembrane conductance regulator (CFTR) chloride channel function found in many types of epithelia. Animal models that recapitulate the human disease phenotype are critical to understanding pathophysiology in CF and developing therapies. CFTR knockout ferrets manifest many of the phenotypes observed in the human disease, including lung infections, pancreatic disease and diabetes, liver disease, malnutrition, and meconium ileus. In the present study, we have characterized abnormalities in the bioelectric properties of the trachea, stomach, intestine, and gallbladder of newborn CF ferrets. Short-circuit current (I-SC) analysis of CF and wild-type (WT) tracheas revealed the following similarities and differences: (1) amiloride-sensitive sodium currents were similar between genotypes; (2) responses to 4,4'-diisothiocyano-2,2'-stilbene disulphonic acid were 3.3-fold greater in CF animals, suggesting elevated baseline chloride transport through non-CFTR channels in a subset of CF animals; and (3) a lack of 3-isobutyl-1-methylxanthine (IBMX)/forskolin-stimulated and N-(2-Naphthalenyl)-((3,5-dibromo-2,4-dihydroxyphenyl)methylene) glycine hydrazide (GlyH-101)-inhibited currents in CF animals due to the lack of CFTR. CFTR mRNA was present throughout all levels of the WT ferret and IBMX/forskolin-inducible I-SC was only observed in WT animals. However, despite the lack of CFTR function in the knockout ferret, the luminal pH of the CF ferret gallbladder, stomach, and intestines was not significantly changed relative to WT. The WT stomach and gallbladder exhibited significantly enhanced IBMX/forskolin I-SC responses and inhibition by GlyH-101 relative to CF samples. These findings demonstrate that multiple organs affected by disease in the CF ferret have bioelectric abnormalities consistent with the lack of cAMP-mediated chloride transport.
Original languageUndefined/Unknown
Pages (from-to)837-844
Number of pages8
JournalAmerican Journal of Respiratory Cell and Molecular Biology
Volume49
Issue number5
DOIs
Publication statusPublished - 2013

Cite this